
THOMAS: Tuning Highly-efficient Offline
Multi-layer-NN on Android SoCs

Majeed Thaika, Anshu Aviral
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

{mthaika,aanshu}@andrew.cmu.edu

1 Introduction

In recent years, mobile devices have become powerful and have relatively high storage capacities -
this has paved the way for mobile devices to support previously infeasible resource-intensive deep
neural networks. There are many ML applications on mobile that can benefit from these DNN
computations, including computer vision (object recognition and image generation), speech (mobile
assistants and voice recognition), and reinforcement learning (mobile games). Nowadays, many
popular ML frameworks offer off-device network training, most commonly utilizing the cloud,
and then allow you to perform inference using the trained model on your mobile device. These
frameworks usually provide CPU-only mobile support and focus on compressing networks so that
they can provide compatibility with a wider variety of phones. Though we cede compatibility, we
believe that leveraging integrated GPUs in the mobile devices can allow us to perform faster inference
on deeper networks. Additionally, we may also be able to train or tune these models on the mobile
device itself.

The primary approach behind machine learning solutions involve gathering data, using that data to
train a model and then using the model to make predictions. With sensors like microphones and
accelerometers in our phones, sampling thousands of data points per second and cameras capturing
millions of pixels at several frames per second, there is no dearth of data required for training an AI
agent. Training and predicting using a neural network, on the other hand, is a compute intensive task
and is difficult to perform without parallelizing the tasks.

Successfully achieving the required level of parallelism necessitates powerful GPUs on mobile SOCs
and a programming platform to leverage this massive computing power. One such example is the
Nvidia mobile processor called Tegra K1, which has been incorporated into Nexus 9 and Google
Tango that contains 192 GPU cores and conforms to the CUDA specification. Even with such
specifications, a typical machine learning model will require days to train from scratch. On the other
hand, inference, which is tantamount to a matrix multiplication, is a more viable task to parallelize.

1.1 Problem Statement

We primarily tackle the problem of parallelizing inference of convolutional neural network on mobile
SOCs. Though easier than training a network, this is still a challenging task due to high memory
capacity required both for storing the parameters and the activation values during the forward pass.
The processing speed of mobile devices still remain in MHz while a typical laptop can clock up to 2
GHz, which means that performing computations on mobile phones is around 4x slower. Moreover,
minimizing energy consumption remains an integral challenge since the battery life of mobile phones
have direct correlation with user experience. We write code to optimize for memory performance,
kernel performance and energy consumption.

Our optimization task is made more complicated by requiring our kernels to be able to generalize
well to a wide range of features, parameters, and configurations, whilst under resource constraints.



Even within the same network architecture and hardware device, two adjacent kernels will have very
different characteristics. Therefore, we try to perform OpenCL optimizations that should generalize
well to layers in popular convolutional architectures.

We aim to provide a framework that will make it possible to fine-tune last layers of deep convolutional
networks. This allows users to personalize pretrained networks offline using on-device user data with
the added security benefit of never exposing their personalized neural network or data. We will also
add support for end-to-end training for smaller CNNs.

2 Related work

Most popular deep learning frameworks are usually focused on improving compatibility for a wide
range of devices. They rarely focus on optimizing for certain devices, especially if the device isn’t
already widely adopted by the community. Since deploying deep learning models on mobile devices
is still in its infancy, there is minimal support for mobile GPUs (let alone CPUs). However, over the
past few years, therer have been growing interest from the open source community to add mobile
compatibility and optimizations for popular deep learning frameworks.

2.1 Tensorflow Lite (Google)

An mobile extension of TensorFlow, TensorFlow Lite translates your ML models into low-latency,
small versions of itself. These lightweight models are decompressed-on-the-fly and can be executed
quickly on your mobile devices. It’s still early in its development cycle and has no GPU support so
far.

2.2 MACE (Xiaomi)

MACE is a deep learning inference framework optimized for heterogeneous Android architectures. It
supports Android OpenCL GPU inference, but is the source code is still proprietary.

2.3 Core ML (Apple)

Apple developed the Core ML framework to be used for deploying ML algorithms on their proprietary
devices. Core ML allows model conversion from frameworks like TensorFlow Lite and Caffe2. It
has GPU compatibility, but community consensus is that it has pretty poor performance to date, and
doesn’t support training on device yet.

2.4 QNNPACK (PyTorch)

QNNPACK (Quantized Neural Networks PACKage) is a mobile CPU-optimized library for NN
inference, that trades off precision for higher performance. QNNPACK supports common NN
operations on compressed 8-bit tensors. QNNPACK is integrated into PyTorch 1.0 and represented
using Caffe2 graphs.

2.5 Fritz.ai

Fritz.ai provides an end-to-end solution that allows developers to convert and deploy ML models
incorporated into your mobile apps.

3 System Specification

3.1 Hardware Specification

We conduct our experiments primarily on the Samsung Galaxy S8. The device has an Octa-core
Kryo CPU and an integrated Snapdragon Adreno 540 GPU. Qualcomm’s Snapdragon is one of the
most widely used mobile system-on-chip in Android today. Therefore, our system can be run on
many recent Android devices with little modification, but you may get different results due to the
heterogeneity of these GPUs.

2



Figure 1: Architecture of Adreno 540 GPU Figure 2: A heterogeneous system that supports
OpenCL

Adreno 540 has an on-chip memory of 1024 KB, clocks 710 MHz, performs 567 GFLOPS and
supports OpenCL API version 2.0, though we use OpenCL 1.1 for our experiments. A high level
overview of Adreno 540 architecture that supports OpenCL is shown in Figure 1.

Adreno 540 currently supports up to 16 waves (equivalent to CUDA warps), with each wave supporting
64 fibers (equivalent to CUDA threads). Thus, for each kernel, the maximum workgroup size
(equivalent to CUDA blocks) is the product of the maximum allowed number of waves and the wave
fiber size (maximum workgroup size of up to 1024 fibers).

3.2 Software Specification

We use the Android NDK (Native Development Kit), a toolset for android app development, which
allows us to code parts of our app in native languages like C and C++. This is particularly helpful as it
enables us to use the OpenCL C++ libraries to perform-data parallel computations. A typical OpenCL
based system, as shown in Figure 2, consists of a host CPU, multiple OpenCL devices like GPU,
FPGAs and kernel codes that are compiled and loaded by the host to OpenCL devices for execution.

We extend the DeepCL library [1] which is a relatively small library for training deep convolutional
neural networks on OpenCL-enabled machines. We also draw inspiration from TrasferCL [2], a
framework which added Android support to DeepCL and offered some GPU support with lots of
room for improvement.

4 Proposed Optimizations

To achieve maximal speedup, we want to optimally utilize the mobile phone’s computing power and
memory bandwidth. To do this, we can consider different layers of OpenCL optimization.

4.1 Application Layer

Due to hardware differences between different OpenCL-enabled devices, OpenCL does not have great
performance portability. Thus, OpenCL applications that have been optimized on other platforms,
like the DeepCL library being optimized on dedicated GPUs, usually perform poorly on smaller
integrated GPUs like the Adreno 540. We also have to make greater resource trade-offs since we have
less compute and storage capacity as compared to discrete GPUs.

When porting code optimized on different architectures to integrated mobile GPUs, two important
factors we must consider are the input data size (network input and architecture) and arithmetic
intensity. GPUs have high computation power compared to CPUs but can still be prone to poor
speedup if the application is inherently memory-bound.

When porting over CPU-optimized code, we may combine multiple CPU module into one OpenCL
kernel so that we reduce our accrued memory communication footprint. We may also split up a
complex module into many smaller OpenCL kernels, which may give us less complex but more
parallel efficient code.

3



4.2 OpenCL API Layer

Instead of compiling the kernels for every layer using clCreateProgramWithSource, we instead call
clCreateProgramWithBinary the first time and load the saved binary file in each subsequent call.
This may not affect kernel execution time, but might help reduce the total program execution time,
especially if we have many repeating NN layers, like we do in VGGNet or ResNet. We build binaries
at the start of training or prediction rather than load existing binary code because it can only be used
with the specific architecture (Adreno A540) for which it was compiled.

Another optimization we tried to reduce total program execution time rather than performing kernel
optimizations was to avoid creating or releasing memory objects between clEnqueueNDRangeKernel
calls, since the amount of memory requested is inversely proportional to the kernel execution time.
Instead, it is encouraged to reuse memory objects in OpenCL instead creating new objects. The
CPU should be doing little/no memory manipulation when launching GPU kernels so as to reduce
GPU execution stalls. Since our proposed frameworks runs CNNs that don’t pass in or modify data
between layers, we sacrifice some functionality for faster program execution time.

We use the Android ION memory allocator, clCreateBuffer, which creates OpenCL memory objects
with ION (zero memory copy) pointers instead of allocating additional memory and copying over the
objects. We also set optimization flags, such as read-only memory, to improve memory load times.

We also tried to avoid blocking memory API calls where possible. Blocking calls stall the CPU while
waiting for the GPU to finish. It also stalls the GPU before the next clEnqueueNDRangeKernel call.
However, since the input of the next layer kernel depends on the output of the previous layer kernel,
there may limited scope for optimization here.

4.3 Kernel Layer

Figure 3: Proposed Kernel architecture

Since we limit our optimization scope to fine-tuning the neural network’s last layer rather than the full
network, we observed that forward convolution is actually the major bottleneck, as seen in Figures 4
to 9, and so we decided to optimize the forward pass rather than backpropagation. In our analysis, we
may provide the execution time for both forward and backward pass if we added a optimization to
those relevant kernels, but the majority of our focus was on the forward pass.

For each forward CNN layer, the convolutional module, the max pooling module, normalization
module, and activation module were all given separate kernels in the DeepCL framework. This offers
great modularity and easy customization, but given we have only one GPU in most mobile devices,
synchronization between these layers could prove to be very costly. Instead, we chose to combine
these modules in each CNN layer into one kernel. This means that we have to offer much more
functionality and flexibility when building this kernel. This will add to the kernel complexity and will
exhibit different characteristics as compared to the four separate kernels, so we will need to explore
different kernel optimizations than those used by DeepCL.

4



Figure 4: Time taken per Kernel for training complete LeNet on MNIST

Figure 5: Time taken per Kernel for fine-tuning last layer of LeNet on MNIST

Figure 6: Time taken per Kernel for fine tuning final two layers of LeNet on MNIST

With our proposed configuration, we have to reduce kernel complexity as much as possible. Roughly
speaking, the more the kernel complexity, the larger the register footprints, so we can fit fewer active
waves. This ultimately results in a smaller maximum workgroup size. However, on the flip side, if
a kernel runs for too long a period, it triggers an alert that causes the Adreno GPU to reset - so a
balance between kernel complexity and execution time should be achieved. It is recommended that
each kernel execution time be in the order of tens of milliseconds.

Some factors that contribute to higher register footprints are high-precision math functions, large
private memory, large shared local memory, loop unrolling, control flow, and barriers. We tried using
fast math, which gives up some numerical precision for higher performance but might not satisfy
IEEE 754 floating-point requirements. We minimized the amount of private memory by precomputing
non-input dependent variables before defining the kernel. We also kept the number of divergent
control flows in the kernel to a minimum - we try to offer different functionality . We experiment
with loop unrolling inside our kernel which increases kernel complexity (possibly fewer active waves)
to hide memory latency.

We decided to remove DeepCL’s shared local memory feature in our forward CNN layer kernel
because we now would need larger local memories (to incorporate max pooling). This lead to lots of
cache conflict misses, smaller work group size, and further complicates the code. This also removed
the need for costly barriers in the forward convolutions, which were mainly used to synchronize local
memory access between fibers of the same workgroup.

We try to improve our GPU ALU performance by applying the aforementioned complexity reduction
techniques and speeding up calculations by allowing the compiler to leverage fast relaxed math for
networks where we can tolerate some loss in precision. We also explored using native math, where
calculations are done directly in hardware so have even better performance than fast relaxed math,

5



Figure 7: Time taken per Kernel for training complete AlexNet on ImageNet

Figure 8: Time taken per Kernel for fine-tuning last layer of AlexNet on ImageNet

Figure 9: Time taken per Kernel for fine tuning final two layers of AlexNet on ImageNet

but since most of our calculations were just addition and multiplications, there wasn’t much room
for improvement. Another ALU optimization we tried was using 16-bit floating points instead of
32-bit floating points inside our kernel. This again does the familiar precision tradeoff for better GPU
performance. Adreno GPUs have dedicated hardware to accelerate half (16-bit FP format) data type
calculations. The GFlops of half ALUs is almost twice of full ALUs.

To alleviate memory bound problems so that the GPU doesn’t stall too long, we try to optimize
memory access by vectorizing load/store using float4 or half4. We also used shorter data types for
data transferred between GPU and memory so that we reduce memory bus traffic, and hopefully
reduce GPU stalls. We thought about using OpenCL’s image buffer to store the input data to our
DNNs in the L1 image cache rather than using the L2 object buffer as seen in Figure 2. We however
ultimately decided against using this approach primarily because we don’t need any of the OpenCL
image optimizations and don’t want to risk L1 cache thrashing.

5 Baseline

Though we didn’t perform in-depth comparison between our implementation and the framework
provided by Tensorflow Lite and PyTorch’s QNNPack, we did observe that the forward pass of their
sequential MNIST implementation both took an average of 8-10ms per image on the S8’s Snapdragon
835 CPU. Using our THOMAS framework, we took 22.8ms for inferring the labels of 128 images in
parallel using the Adreno 540 GPU.

6



6 Experiment Setup

6.1 Comparing different architectures

For our experiments, we choose two well-known deep convolutional neural networks, LeNet and
AlexNet. We benchmarked our optimizations using the MNIST and CIFAR-10 datasets on LeNet,
and ImageNet on AlexNet.

6.2 Snapdragon Profiler

Figure 10: A Snapdragon run for LeNet on MNIST dataset for batchsize 128, showing important
performance parameters like % CPU Overload and GPU % Bus Busy

We used the Snapdragon Profiler to analyze Snapdragon-powered Android SoC performances through
monitoring the CPU, GPU, memory, power, and thermal statistics over time. This helped us identify
and rectify potential bottlenecks.

6.3 OpenCL Kernel Profiler

The OpenCL Kernel profiler helps us analyze the duration of each kernel on the queue. In our case,
the profiler helps us identify how long each kernel takes to execute to completion on the GPU. We
can then identify performance bottlenecks and profile our optimizations.

7 Experiment Results and Discussion

For our three architecture-dataset pairs, we tried seeing what effect different batch sizes would have on
the program execution time (see Figures 11 to 13). We found that the optimal batch size configurations
for our framework are 128 images for LeNet-MNIST pair, 16 images for LeNet-CIFAR, and 8 images
for AlexNet-ImageNet. Additionally, for LeNet we notice that there are lots of time being spent on
non-GPU operations for smaller batches. When we dug into the Snapdragon Profiler, we saw that
this was because each kernel was reading memory much less than its capacity as seen in Figure 14.
This suggests that the program is memory bound. However, we see almost no non-GPU execution
time using AlexNet-ImageNet, suggesting these programs are more compute bound.

We notice that the time being spent on forward pass stays decreases as we increase batch sizes. Since
we have no barriers or shared memory in our forward CNN layer, this process is memory bound
when using smaller batches, but fully utilizes the maximum workgroup size as we increase batch size,
giving us good performance.

Backpropagation execution time increases as we deviate batch size from optimal. For large batch
sizes, this is likely due to cache thrashing from local memory and performance degradation from
barriers waiting for stragglers. For smaller batch sizes, this is likely because we aren’t fully utilizing
the maximum workgroup size available to us.

Initially, we used blocking memory read, write, and mapping operations - especially since the input
of traditional CNN layers are dependent on the output of the previous layer. We tried to loosen

7



Figure 11: Program and Kernel execution time with increasing batch size for LeNet on MNIST

Figure 12: Program and Kernel execution time with increasing batch size for LeNet on CIFAR

Figure 13: Program and Kernel execution time with increasing batch size for AlexNet on ImageNet

this restriction by using non-blocking writes because we reasoned that the network doesn’t need to
block twice while writing the last layer and reading the next. As seen in Figure 16, we get faster
backpropagation times but surprisingly slower times for forward pass and non-GPU execution. A
likely explanation is that we may get stragglers and have to eventually wait longer for the data to

8



Figure 14: SP Read Sizes with increasing Batch
Size (LeNet-MNIST)

Figure 15: Comparison between using 32-bit
floats vs 16-bit floats i.e. half (LeNet-MNIST)

Figure 16: Comparison between blocking and
non-blocking kernels (LeNet-MNIST)

Figure 17: Comparison between fast relaxed
math and slow math kernels (LeNet-MNIST)

Figure 18: Comparison between Load from
Source and Load from Binary for LeNet over
MNIST and CIFAR datasets

Figure 19: Comparison between Zero Copy and
Copy to Device for LeNet over MNIST and CI-
FAR datasets

Figure 20: Comparison between 1D and 2D
Work Group assignment of LeNet for MNIST
dataset

Figure 21: Comparison between with and with-
out Pragma Unroll for LeNet on MNIST dataset

9



propagate forward. Since we have barriers in backward pass, being blocked fewer times may be
beneficial.

We expected the fast relaxed math optimization to be faster than unoptimized ’slow’ math case, but
this was not what we observed. As seen in figure 17, there is negligible difference between the
two execution times. This is likely due to our kernels mostly doing addition and multiplication
calculations which are already quite fast and won’t affect the runtime nearly as much as other factors.

When changing the forward pass kernel to use 16-bit floating point data type instead of its 32-bit
counterpart and the complementing half functions, we notice a big speedup in the forward execution
time. This is likely because the calculations are being done by the dedicated Adreno half hardware
which runs at GFlops almost twice that of the 32-bit hardware.

As expected we see that loading data from binary once is faster than building the source every time as
seen in Figure 18. Zero copy mapping also performs better than copying from device since we avoid
costly memory copy at the host side - this can be seen in Figure 19.

Figure 22: Comparison between with and without
Vectorization for LeNet on MNIST dataset

We expected 2D workgroup assignment to per-
form better than our original 1D assignment to
leverage the locality of convolution operations.
However, we notice negligible difference in Fig-
ure 20, probably because we didn’t modify our
access pattern to a blocked approach to actually
leverage the cache.

We expect loop unrolling to hide memory la-
tency within each kernel as it prefetches data,
but we can see that this isn’t actually the case in
Figure 21. This is most likely because the com-
piler itself does loop unrolling optimizations
where possible, and it could be the case that
our #pragma unroll flag is redundant and/or not
helpful.

Vectorized load/store in the forward layer gave
negligible performance improvement (see Figure 22), probably because the programs weren’t memory
bound.

We also monitored the temperature and power of the Samsung S8 as we trained each of the networks
(see Figures 24 to ), since we don’t want the mobile phones to reach very high temperatures and
consume lots of power, because of possible hardware degradation (since mobile phones have poor
ventilation and battery life). We posit that since GPUs perform simple subtasks with a small power
budget, they are more optimized for performance/Watt as compared to CPU. Hence, porting code
onto GPU will result in lower power consumption and result in longer battery life. As expected, the
larger network consumed most power and made the device the warmest amongst the three networks.
Also, same network working on larger dataset also consumes more power. Our framework still posts
much better thermal and power stats than the equivalent training task on the mobile CPU.

Figure 23: LeNet on MNIST Temperature and Power Statistics

References
[1] Hugh Perkins. Deepcl. https://github.com/hughperkins/DeepCL, 2018.

[2] Olivier Valery. Transfercl. https://github.com/hughperkins/TransferCL, 2018.

10

https://github.com/hughperkins/DeepCL
https://github.com/hughperkins/TransferCL


Figure 24: LeNet on CIFAR Temperature and Power Statistics

Figure 25: AlexNet on ImageNet Temperature and Power Statistics

11


	Introduction
	Problem Statement

	Related work
	Tensorflow Lite (Google)
	MACE (Xiaomi)
	Core ML (Apple)
	QNNPACK (PyTorch)
	Fritz.ai

	System Specification
	Hardware Specification
	Software Specification

	Proposed Optimizations
	Application Layer
	OpenCL API Layer
	Kernel Layer

	Baseline
	Experiment Setup
	Comparing different architectures
	Snapdragon Profiler
	OpenCL Kernel Profiler

	Experiment Results and Discussion

